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Abstract
In this paper we study under the small-signal approximation the properties
of the output electric field of second harmonic generation (SHG) for vertical
transmission in Family A of the generalized Fibonacci (GF(m, 1)) quasiperiodic
ferroelectric domain system. It is found that under perfect quasi-phase-matched
(PQPM) conditions there exists self-similarity for the intense peaks of SHG
(IPSHG) in real space and the two integers q and p indexing IPSHG make
an interesting zero–odd set when m is large enough. On the other hand, self-
similarity for IPSHG is broken under imperfect quasi-phase-matched (IQPM)
conditions and the SHG spectra comprise a group of intense peaks and another
group of satellite weak lines when m is very large. The corresponding integers q
and p make an interesting odd–odd set and a successive integer set, respectively.
Two kinds of effects of vacancies on SHG have also been found. The analytical
results are confirmed by numerical simulations.

1. Introduction

Since the important discovery by Shechtman et al [1] of a diffraction pattern with fivefold
symmetry, much attention has been given to the investigation of the optical properties
of quasilattices and multilayer systems arranged following quasiperiodic sequences. The
Fibonacci model (FC(1)) is the most studied quasiperiodic sequence because its structure
not only possesses the main characteristics of quasicrystals but is also relatively simple.
Using molecular-beam epitaxy, Merlin et al [2] in 1985 fabricated the first quasiperiodic
semiconductor superlattice, consisting of alternating layers of GaAs and AlAs to form an FC(1)
sequence. Tamura and Wolfe [3] made a theoretical study of acoustic-phonon transmission
through a realistic FC(1) superlattice and obtained some results for the transmission spectra.
Zhu and Ming [4] investigated theoretically the second harmonic generation (SHG) in an
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FC(1) optical superlattice made from a single crystal with a quasiperiodic laminar ferroelectric
domain structure. Zhu et al [5] fabricated a nonlinear optical superlattice of LiTaO3 in which
two building blocks, A and B , were arranged as an FC(1) sequence and measured its SHG
spectra. They also researched the characteristics of SHG through the Thue–Mouse system [6],
the intergrowth system [7] and the three-component Fibonacci system [8, 9], respectively. Yang
and Liu [10, 11] studied the properties of SHG through Fibonacci-class (FC(n)) ferroelectric
domains, which are perfect extensions of FC(1), found an interesting self-similarity of the
brightest peaks and obtained the output power per unit area of SHG.

Generalized Fibonacci models (GF(m, n)) are another kind of general extension of FC(1)
and were firstly systematically investigated by Gumbs and Ali [12] in 1988. They can be
generated by the substitution rules

B → A, A → Am Bn, (1)

where m and n are all positive integers. Generally, GF(m, 1) is defined as Family A of GF(m,
n) while GF(1, n) is defined as Family B of GF(m, n), and their associated substitution matrices
are as follows:

MA =
(

m 1
1 0

)
(2)

and

MB =
(

1 n
1 0

)
. (3)

The corresponding eigenvalues of MA and MB are

τA± = m ± √
m2 + 4

2
(4)

and

τB± = 2 ± √
1 + 4n

2
, (5)

respectively. This shows that MA satisfies the Pisot condition and the unit determinant
requirement [13]. Therefore, GF(m, 1) are real quasiperiodic models and have a volume-
preserving trace map and a Cantor-like energy spectrum with critical electronic states [14].
Unfortunately, GF(1, n) are non-quasiperiodic models and have a volume-non-preserving trace
map and a Bloch-like part as well as a singular part of the energy spectrum such that extended
electronic states are allowed.

Interest in GF(m, n) has increased since it appears that in some fundamental aspects the
physical properties of the Fibonaccian quasicrystal may not be genetic [15]. Costa Filho and
Albuquerque [16] researched fractal aspects of the spin wave spectra in pure and generalized
Fibonacci anisotropic magnetic superlattices. Mauriz et al [17] investigated the specific heat
properties of electrons in one-dimensional (1D) GF(m, n) aperiodic potentials. Tyc and
Salejda [18] formulated a quantum-mechanical model of electron ballistic transport in GF(m,
n) semiconductor superlattices. As for the transmission properties of light, Kohmoto et al [19]
considered light propagation through an optical Fibonaccian (GF(1, 1)) multilayer. Dulea et al
[15] reported optical transmission through multilayers arranged according to families A and B
of GF(m, n). Klauzer-Kruszyna et al [20, 21] developed a theory of polarized light propagation
in dielectric GF(m, n) multilayers and also presented the numerical results of transmittance.
Recently, Li and Yang [22] have studied the transmission properties of light normally through
aperiodic GF(m, n) multilayers.

In this paper we investigate the properties of SHG through GF(m, 1) ferroelectric domains,
as GF(1, n) are non-quasiperiodic sequences and cannot be obtained by the projection method.
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It is found that, under the perfect quasi-phase-matched (PQPM) condition, and when m is large
enough, the intense peaks of SHG (IPSHG) locate at odd times of the coherence length and the
two integers indexing IPSHG make an interesting zero–odd set. Under imperfect quasi-phase-
matched (IQPM) conditions, a new group of weak satellite lines occur and the corresponding
integers make an interesting odd–odd set and a successive integers set. Additionally, we also
propose a possible solution for the structure of imperfect quasiperiodic superlattices to fit the
PQPM condition.

We organize our paper as follows: the projection method of GF(m, 1) is introduced in
section 2, the characteristics of SHG under PQPM are investigated in section 3, section 4 is
devoted to a discussion of the case under IQPM conditions. Self-similarity and the effect of
vacancies are researched in section 5, and section 6 gives a brief summary.

2. The characteristic construction of GF(m, 1)

By means of substitution in equation (1) one can obtain GF(m, 1) as follows:

B → A, A → Am B. (6)

Starting with a A, the first three generations of GF(m, 1) are

G1 = A

G2 = Am B

G3 = (Am B)(Am B) · · · (Am B)︸ ︷︷ ︸
m

A,
(7)

which show the following recurring relation

Gh = Gm
h−1Gh−2 (h � 3). (8)

Additionally, one can also obtain GF(m, 1) sequences by a projection method from a two-
dimensional (2D) square lattice. As an example, the GF(2, 1) sequence is illustrated in figure 1.
From the coordinate origin, one can draw a projection line (PL) with projection angle θ , which
satisfies [23]

tan θ = 1

δm
=

√
m2 + 4 − (2 − m)

2m
, (9)

where

δm = 1 + 1

τm
=

√
m2 + 4 + 2 − m

2
, (10)

and the eigenvalue

τm = τA+ = m + √
m2 + 4

2
. (11)

At the same time, the eigenvalue τm also fits into the following limit value [14]

τm = lim
h→∞

GF(m, 1)h

GF(m, 1)h−1
, (12)

where GF(m, 1)h is the number of elements for the hth generation of GF(m, 1).
We make the lower right-hand vertices (hollow circles) of the unit cells, which the PL has

passed through, project to the PL only when the higher ones are not projecting points. Then
one can obtain a set of points (solid circles) on the PL which have the following positions along
the PL from the origin:

PN = N cos θ + sin θ�N tan θ�, (13)
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Figure 1. Illustration for obtaining the GF(2, 1) sequence with projection method, where tan θ =√
2/2.

where � �’s represent the greatest integer function. We call the long segments on the PL A
cells, the lengths of which are cos θ + sin θ , and the short ones B cells, the lengths of which are
cos θ , then A and B cells construct GF(m, 1) sequences. In figure 1, for the GF(2, 1) sequence,
tan θ = √

2/2, A = (
√

3 + √
6)/3, and B = √

6/3.

3. The output electric field of SHG E2 under PQPM conditions

3.1. The formula of E2

The GF(m, 1) ferroelectric systems being studied in this paper are made up of LiNbO3. First
we construct two building blocks A and B containing one positive ferroelectric domain and
one negative one, shown in figure 2(b). In order to explore the largest second-order nonlinear
optical coefficient d33 of the material, one can make the interfaces of each domain parallel to
the y–z plane and the polarization of the electric fields along the z-axis with the propagating
directions along the x-axis. From figure 2(a) one can see that the coordinate xN , which is the
position of the N th layer of the ferroelectric domain boundary, can be written as follows [23]:

xN = NlB + (lA − lB)

⌊
N

δm

⌋
, (14)

where lA (lB) is the thickness of block A (B). Secondly, in order to make the superlattice
system fit the PQPM condition, we try to set that

lA/ lB = δm

l+A = l

l−A = l(1 + η)

l+B = l

l−B = l(1 − τmη),

(15)

where

η = 2(δm − 1)

1 + δmτm
= (m + 2)

√
m2 + 4 − m2 − 2m − 2

2m + 3
, (16)

and l is adjustable structure parameter.
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(a) (b)

Figure 2. The ferroelectric multilayers constitute a GF(2, 1) sequence superlattice, where the
directions of the arrows indicate the polarization orientation of the electric fields. (a) The schematic
diagram of the total ferroelectric superlattice, where the coordinate {xN } is the position of the N th
layer domain boundary. (b) Two building blocks, A and B , each comprising one positive and one
negative ferroelectric domain.

Under the small-signal approximation the electric field of the fundamental beam (FB) E1

and that of SHG E2 satisfy the following wave equations [4, 24]:

dE1(x)

dx
= 0

dE2(x)

dx
= −i32πω2

k2c2
d(x)E2

1ei(k2−2k1)x,

(17)

where

d(x) =
{

d33, in positive ferroelectric domains

−d33, in negative ferroelectric domains,
(18)

ω is the angular frequency of the FB, k1 and k2 are the wavenumbers of the FB and the SHG,
respectively, and c is the speed of light in a vacuum. After passing through N layers of GF(m,
1) ferroelectric domains the electric field E2 can be presented as

E2(N) = −64πω2

k2c2�k
d33 E2

1

(∑
j=0

ei�kx2 j+1 −
∑
j=0

ei�kx2 j

)
, (19)

where

�k = k2 − 2k1, (20)

and the relationship between the wavenumber and the refractive indices satisfies [25]

�k = |�k| = 4π

λ
(n2 − n1), (21)

where n2 and n1 are the refractive indices of SHG and FB, respectively.
GF(m, 1) are quasiperiodic sequences, and the structure of the systems satisfies

equations (14) and (15). Then one can see that in the reciprocal space the Fourier transform of
the layer positions of GF(m, 1) superlattices will consist of Bragg peaks [26, 27] at positions

k pq = 2π

D
(pδm + q), (22)

where p and q are integers, and

D = lBδm + lA − lB . (23)



2592 Y Chen et al

Then the output electric field of SHG E2 of GF(m, 1) superlattices can be represented as
follows:

E2(N) ≈ −128πω2

k2c2�k
(d33E2

1)e
i
2 (π+�kl) sin

(
�kl

2

) ∑
pq

eiYpq

(
sin Ypq

Ypq

)
δ(�k − k pq), (24)

where

Ypq = πδm

D
[qlB − p(lA − lB)]. (25)

3.2. The tendency of SHG spectra

Generally, the intensity of the electric field of SHG I (2ω) can be defined as follows:

I (2ω) = |E2|2. (26)

By means of equations (24) and (26), one can obtain the relative intensity of SHG. In order
to compare our results with the corresponding numerical simulations [4, 10] and experimental
data [5] for Fibonacci superlattices, we choose λ0 = 1.318 µm and the structure parameter l
changes from 0.0 to 65.0 µm in real space. For the special wavelength of FB λ0, the refractive
indices n2 and n1 are all constant. For LiNbO3, n10 = 2.1453 and n20 = 2.1970 [28].

Figures 3(a)–(c) show the cases of GF(1, 1), GF(4, 1) and GF(8, 1) in real space. One
can see that when m is relatively very small there are not only some intense peaks but also
an abundance of weak peaks appearing in the SHG spectra, and the spectral structure is
very complicated. The reason for this is that, in comparison with periodic models, GF(m,
1) are normal quasiperiodic sequences and have a lower space-group symmetry and more
Fourier distributions. This would provide more reciprocal-lattice vectors to compensate for
the mismatching phase among interacting waves and would make the SHG spectral structure
more complex.

From figures 3(d)–(f) one can see that with increasing m the weak peaks will disappear
completely and the spectral lines tend to be composed of only a set of intense peaks with
equivalent intensity and the positions locate at the odd times of the coherence length of SHG
lc, which can be defined as follows: [29]

lc = λ0

4(n20 − n10)
. (27)

For LiNbO3 material, if the aforementioned data are chosen then one can obtain the coherence
length lc as follows:

lc = 6.3733 µm. (28)

Finally, when m is big enough, the two integers q and p indexing the IPSHG would make an
interesting zero–odd set as follows:

lim
m→∞{q, p}intense = {0, 2 j + 1}, ( j � 0). (29)

This can be explained as follows.
With the increase in m, the proportion of B blocks becomes smaller and smaller and the

real quasiperiodic sequences would change to approximately periodic ones. On the other hand,
by means of equations (10), (11) and (14)–(16), one can also obtain that

lim
m→∞ δm = 1

lim
m→∞ τm = ∞
lim

m→∞ η = 0

lim
m→∞ l+A = l−A = l+B = l−B = l

lim
m→∞ xN = NlA.

(30)
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(a) (b)

(c) (d)

(e) (f)

Figure 3. In real space, the figure of SHG relative intensity I (2ω) versus structure parameter l
under PQPM conditions, where for LiNbO3 λ0 = 1.318 µm, n10 = 2.1453, and n20 = 2.1970.

Obviously, this is a simple periodic structure. On the other hand, the same conclusion can be
deduced from the projection method. If m is large enough, then the projection angle θ tends
to π/4 (see equation (9)), i.e. the PL tends to the diagonal of 2D square lattices (shown in
figure 1). Of course, the lengths of the cells A and B on the PL would tend to be equivalent
and they construct a periodic sequence. In a word, this kind of 1D GF(m, 1) sequence is
quite different from some 2D quasicrystals (e.g. the 2D Penrose tiling, the 2D dodecagonal
quasicrystal, etc). While the scales of the latter tend to be infinite, their characteristics are still
quasiperiodic, for their symmetries are mainly dependent on their central structures. However,
the former posses interesting asymptotic properties and would tend to be like periodic structures
when the parameter m is large enough. Then it is possible for us to deal with the tendency of
SHG spectra in the same way as for the spectra of periodic sequences.

From [30] it is known that IPSHG can occur only when the reciprocal-lattice vectors of a
periodic system Gn satisfy the following relation

�k − Gn = 4π

λ0
(n20 − n10) − 2πn

	
= 0, (31)

where n is a positive integer and 	 = 2l is the period of the superlattice. Equation (31) can be
also rewritten as follows:

π

lc
− 2πn

2l
= 0 ⇒ l = nlc. (32)
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On the other hand, the effect of vacancies would be to modulate IPSHG by the parameter
sin(�kl/2) (see equation (24)). Consequently, for periodic multilayers systems, the structure
parameter l for IPSHG should be equal to odd times of lc (i.e. the positions can be labelled by
only one odd number) and the SHG spectra would comprise purely intense peaks.

Additionally, by means of equations (21)–(23), we find that in real space the structure
parameter l of SHG peaks for GF(m, 1) quasiperiodic superlattices can be presented as follows:

lqp = lc

(
q

δm
+ p

)
. (33)

When m is large enough, GF(m, 1) tend to be periodic sequences and only the peaks indexed
by one odd number could maintain a relatively high intensity, then the integers q and p should
be equal to zero and an odd number, respectively. This is the reason why integers q and p
comprise the zero–odd set in equation (29).

In figure 3 (f), m = 1000 and

l(0,1) = 6.3733 µm = lc

l(0,3) = 19.1199 µm = 3lc

l(0,5) = 31.8665 µm = 5lc

l(0,7) = 44.6132 µm = 7lc

l(0,9) = 57.3598 µm = 9lc.

(34)

Obviously, the analytical results are confirmed by the numerical simulations.
In the reciprocal space, the structure parameter l is kept constant and has been chosen to

be lc. Figure 4 shows the relation between the relative intensity of SHG peaks I (2ω) and the
wavelength of FB λ. One can see that the properties in reciprocal space are similar to those
in real space. When m is relatively very small, there are many SHG peaks, intense ones and
weak ones, and the structure of the SHG spectra is very complicated (see figures 4(a) and (b)),
but when m is not very small, the weak peaks disappear gradually and the spectral lines mainly
consist of several intense peaks (see figures 4(c)–(e)). Consequently, when m is big enough, the
weak peaks will disappear completely and only a set of intense peaks with equivalent intensity
are left (see figure 4(f)). The principle is as the same as that in real space.

4. The output electric field of SHG E2 under IQPM conditions

By means of equations (6)–(8), one can see that although GF(1, 1) and FC(1) are the same
model and GF(m, 1) and FC(n) [31] are all extensions of FC(1), the symmetry of the former is
quite different from that of the latter. Consequently, the PQPM condition for generating SHG
of the former ferroelectric superlattice would be, of course, different from that of the latter. For
the former, we choose the structure confined by equations (14)–(16), where two irrationals δm

and τm are used, and obtain the interesting tendency of the spectra of SHG, which has been
discussed in detail in section 3.2.

In order to explore the influence of PQPM conditions on the SHG spectra, we choose
another set of structure conditions as follows:

xN = N + 1

δm

⌊
N

δm

⌋
, (35)
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(a) (b)

(c) (d)

(e) (f)

Figure 4. In reciprocal space, the figure of relative intensity of SHG I (2ω) versus fundamental
wavelength λ under PQPM conditions, where for LiNbO3 lc = 6.373 µm.

lA/ lB = δm

l+A = l

l−A = l(1 + η)

l+B = l

l−B = l(1 − δmη),

(36)

and

η = 2(δm − 1)

1 + δ2
m

= 3
√

m2 + 4 − m − 4

2m2 − 2m + 5
, (37)

where only one irrational δm is used. This is similar to the conditions for FC(n) [10].
For this condition one can find that the structures for GF(m, 1) systems do not fit the PQPM

condition but only satisfy the IQPM one. One can also deduce that the formula for E2 of GF(m,
1) superlattices has the same form as that of equation (24), but the corresponding variables here
are not the same; they can be written as follows:

Ypq = πδm

1 + δ2
m

(qδm − p)

D = lAδm + lB

lqp = lc
q + pδm

1 + δm
.

(38)
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(a) (b)

(c) (d)

(e) (f)

Figure 5. In real space, the figure of SHG spectra under IQPM conditions, where the corresponding
parameters are as the same as those in figure 3.

We draw the figure of the SHG spectra in real space in figure 5 and find that when m is not
very large there are also plentiful intense and weak peaks and the number of lines is about three
times that under PQPM conditions. When m is large enough, the two integers q and p indexing
IPSHG make a new interesting odd–odd set as follows:

lim
m→∞{q, p}intense = {2 j + 1, 2 j + 1}, ( j � 0). (39)

At the same time, each intense peak is surrounded by two satellite peaks, where the two integers
q and p construct the following even–odd and odd–even sets:

lim
m→∞{q, p}satellite =

{
{2 j, 2 j + 1}
{2 j + 1, 2 j + 2}, ( j � 0). (40)

These new phenomena can be explained as follows. The structure defined in
equations (35)–(37) only fits the IQPM condition, but not the PQPM condition as in section 3.
The reason for this is that GF(m, 1) are not perfect quasiperiodic sequences and the substitution
method for generating GF(m, 1) is not completely in accord with the corresponding projection
method. From equations (9), (10) and (12), we find that the limit value τm of the substitution
method is not directly a count-down of the tangent value δm of the projection angle. This means
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that the structures of GF(m, 1)s fitting the PQPM condition should be dependent on both τm

and δm . This is quite different from that of FC(n), which are a class of perfect quasiperiodic
sequences [10]. This is the very reason that in section 3, in order to make the system fit
PQPM conditions, we chose τm and δm to confine the structure jointly. In order to compare
the symmetry of GF(m, 1) sequences with that of FC(n) ones, we list the PQPM structure
conditions of the latter in [10] as follows:

lA/ lB = ϕn

l+A = l

l−A = l(1 + η)

l+B = l

l−B = l(1 − ϕnη),

(41)

where

η = 2(ϕn − 1)

1 + ϕ2
n

= 3
√

n2 + 4 − n − 6

2n + 3
. (42)

From equation (41) one knows that for FC(n) sequences the substitution method is in accord
with the projection one and the structures fitting PQPM conditions are dependent on only one
parameter ϕn. The SHG spectra of FC(n) are shown in figure 6, and one can see that the
properties of their spectral lines are similar to those of GF(m, 1) in section 3 (see figure 3) but
are different from those of GF(m, 1) in section 4 (see figure 5). The same set as equation (29)
can also be found when n is very large (see figure 6(f)).

In this section, one of the results for fitting IQPM is the generation of satellite peaks,
because the space-group symmetry of the systems is lower than that in section 3 and has more
reciprocal vector distributions. The other result for fitting IQPM is the changing of the positions
of the SHG peaks lqp (see equations (33) and (38)) and the variation of the relative intensity
I (2ω).

5. The self-similarity of intense peaks and the effect of vacancies on SHG

5.1. The self-similarity of intense peaks

From equation (24) one can see that when �k = k pq and Ypq → 0 the SHG lines are intense
peaks. By means of equations (33) and (38), one can obtain the ratio of integers p and q
indexing intense peaks for the following two cases:

PQPM : p/q → τm

IQPM : p/q → δm .
(43)

By use of equation (12) one can obtain the property of the structure parameter l of IPSHG as
follows:

PQPM : lqp = lGF(m,1)h−1,GF(m,1)h = lh

IQPM : lqp �= lGF(m,1)h−1,GF(m,1)h = lh,
(h � 2). (44)

Consequently,

PQPM : lh−1 + mlh = lh+1

IQPM : lh−1 + mlh �= lh+1,
(h � 2). (45)

In real space, the wavelength of FB λ0 is kept constant and the effect of the dispersion of
refractive indices on SHG has not been taken into account. From equation (44) one can see that
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The SHG spectra for FC(n) ferroelectric superlattice systems in real space, where the
corresponding parameters are the same as those in [10].

for GF(m, 1) superlattices there exists self-similarity for the structure parameter l of IPSHG
under PQPM conditions, but this property would be broken under IQPM conditions.

In reciprocal space the wavelength of FB would vary, then generally the effect of the
dispersion of refractive indices on SHG should be taken into account and the self-similarity
would be destroyed, i.e. under IQPM and/or PQPM condition(s) there is no self-similarity for
the count-down of wavelength λ.

5.2. The effect of the vacancies on the SHG spectra

From equation (24) one can see that for the output electric field of SHG E2 there are two
modulating factors sin �kl/2 and sin Ypq . If one of them is equal to zero some SHG peaks
disappear, then one can obtain the following conditions for the effect of the vacancies on SHG
spectra:

PQPM :
{

(i) {q, p}vacancy = {0, 2n}
(ii) {q, p}vacancy = {n(m + 1), n}

IQPM :
{

(i) {q, p}vacancy = {2n, 2n}
(ii) {q, p}vacancy = {n(m + 1), n(2 − m)}, (m � 2),

(46)
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where n is a positive integer. Obviously, there are two different kinds of effects that the
vacancies have on SHG spectra under PQPM and IQPM conditions, respectively, and all of
the SHG spectral lines that have disappeared are weak lines.

Additionally, to the best of our knowledge there are very few reports of experimental
measurements of the SHG effects in ferroelectric quasiperiodic superlattices. By means of
LiTaO3 and Sr0.6Ba0.4Nb2O6 materials, Ming et al [5, 32–34] designed and fabricated some
optical superlattices following Fibonacci sequences and used these structures to measure the
effects of quasi-phase-matching SHG and quasi-phase-matched third-harmonic generation.
The most probable reasons for the lack of publications on non-Fibonaccian ferroelectric
superlattices, we think, are the following: (1) compared with the Fibonacci model, the number
of elements for GF(m, 1) sequences would increase quickly with increments in the generation
number h and sequence parameter m. Consequently, the more blocks of ferroelectric domains
there are, the more difficult it would be to fabricate the structures, and furthermore the more
accumulated error would be caused; and (2) one usually calculates this kind of systems by use
of the small-signal approximation method. If quasiperiodic systems are made up of too many
domains, then the attenuation of signals should be taken into account. Therefore, experimenters
would rather choose Fibonacci superlattices for simplicity.

6. Summary

First, we introduced the substitution method and the projection method for GF(m, 1). The
characteristics of three important parameters θ , δm and τm were discussed.

Secondly, the formula of the output electric field of SHG E2 was deduced under PQPM
conditions. It was found that, when m changes from small to large, the structure, the relative
intensity and the position of the SHG peaks all tend to be stable. If m is big enough, the two
integers q and p indexing IPSHG make an interesting zero–odd set (see equation (29)).

Then, under IQPM conditions we analysed the tendency of SHG spectra and found that
when m is large enough SHG spectra are made up of a group of intense peaks and another group
of satellite weak lines, and the two integers q and p indexing these two kinds of SHG lines make
a corresponding odd–odd set (see equation (39)) and a successive integer set (see equation (40)).
In conclusion, GF(m, 1) are not perfect quasiperiodic sequences and the substitution method
for generating GF(m, 1) is not completely in accord with the corresponding projection one.
This means that the structures of GF(m, 1)s fitting PQPM conditions should be dependent on
both irrationals. This is quite different from the case for the perfect quasiperiodic sequences.

Finally, we obtain the results for the self-similarity of intense peaks and the effect of
vacancies on SHG and find that under PQPM conditions self-similarity of the intense peaks
of SHG only exists in real space and it would be broken in reciprocal space. Two kinds of
effects of vacancies on SHG have been found.
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